Abstract

An improved low-Reynolds number model was adopted to predict the dynamic and thermal fields in flows with transpiration. The performance of the adopted model was first contrasted with the direct numerical simulation (DNS) data of channel flow with uniform wall injection and suction. The validity of the present model applied to flows with a high level of transpiration was further examined. To explore the model's performance in complex environments, the model was applied to simulate a transpired developing channel flow. By contrasting the predictions with DNS data and measurements, the results indicated that the present model reproduced correctly the deceleration and acceleration of the flow caused by the injection and suction from the permeable part of the wall. The turbulence structure of transpired flows was also well captured and the superior performance of the adopted model was reflected by the predicted correct level of ε with the maximum being located at both the injection and the suction walls. The predicted thermal field by the present model also compared favourably with the DNS data and measurements. Copyright © 2000 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call