Abstract
Abstract Decomposition of litter is a key biochemical process that regulates the rate and magnitude of CO2 fluxes from biosphere to atmosphere and determines soil nutrient availability. Although several studies have shown that plant litter decomposition accelerated in their native compared to a foreign environment, that is, a home‐field advantage (HFA) for litter degradation, to date HFA has only been considered in terms of respiration or litter mass loss. The competitive success of the decomposer micro‐organism will be determined by its ability to transform used OM into population growth. Therefore, we hypothesized that HFA for microbial growth would be more pronounced than that for decomposition. We also expected that HFA effect for decomposition and microbial growth would increase with lower quality litter, which the fungal role in litter decomposition would be more dominant than that of bacteria, and that HFA effects would strengthen with more pronounced differences between ‘home’ and ‘away’ environments. We designed a 2‐month microcosm reciprocal transplant experiment with litter from two sites with contrasting climates (Atlantic and Sub‐Mediterranean climates) and including three tree species (Quercus robur, Pinus sylvestris and Fagus sylvatica). We found a stronger HFA for microbial growth than for decomposition, that the nutrient content and C‐quality of litter influenced the microbial HFA and that interactions between bacterial and fungal communities during litter decomposition modulated the HFA for litter degradation. Low litter nutrient content, strong nutrient limitations and low C‐qualities all favoured fungal over bacterial decomposers, and our results suggest a dominant functional role of the fungal community and gave rise to HFA effect for fungal growth but that this translated to only marginal implications for overall decomposition of litter. A free Plain Language Summary can be found within the Supporting Information of this article.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.