Abstract

This paper presents a resources-optimized digital action potential (AP) detector featuring an adaptive threshold based on a new Sigma-delta control loop. The proposed AP detector is optimized for utilizing low hardware resources, which makes it suitable for implementation on most popular low-power microcontrollers units (MCU). The adaptive threshold is calculated using a digital control loop based on a Sigma-delta modulator that precisely estimates the standard deviation of the amplitude of the neuronal signal. The detector was implemented on a popular low-power MCU and fully characterized experimentally using previously recorded neural signals with different signal-to-noise ratios. A comparison of the obtained results with other thresholding approaches shows that the proposed method can compete with high performance and highly resources demanding spike detection approaches while achieving up to 100% of true positive detection rate at high SNR, and up to 63% for an SNR as low as 0 dB, while necessitating an execution time as low as 11 μs with the MCU operating at 8 MHz.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.