Abstract
Vast numbers of qubits will be needed for large-scale quantum computing because of the overheads associated with error correction. We present a scheme for low-overhead fault-tolerant quantum computation based on quantum low-density parity-check (LDPC) codes, where long-range interactions enable many logical qubits to be encoded with a modest number of physical qubits. In our approach, logic gates operate via logical Pauli measurements that preserve both the protection of the LDPC codes and the low overheads in terms of the required number of additional qubits. Compared with surface codes with the same code distance, we estimate order-of-magnitude improvements in the overheads for processing around 100 logical qubits using this approach. Given the high thresholds demonstrated by LDPC codes, our estimates suggest that fault-tolerant quantum computation at this scale may be achievable with a few thousand physical qubits at comparable error rates to what is needed for current approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.