Abstract
The aim of this study was to develop an in vitro cell model for studying the in vivo observed vascular effect, induced by exposing blood vessels to changing electric field strengths. Human microvascular endothelial cells (HMEC-1) were cultured as monolayers on 8 chamber glass slides as a model of capillary wall. Exposed to electric pulses alone, or in the presence of bleomycin (electrochemotherapy), monolayers were incubated with culture medium, fixed with methanol, stained with Giemsa, and photographed. Images of high-contrast low-magnification monolayers made under identical optimal light exposure were converted to greyscale, and the use of a threshold tool yielded a binary distribution, from which we determined two parameters of monolayer integrity: the covered surface area and the number of cells. We show that this low-magnification image analysis method for attached endothelial cells provides reliable control parameters of monolayer integrity, representing capillary wall. Besides, already within 2h post-treatment the data show distinct effects in the monolayer integrity parameters for electric pulses alone, or in the presence of bleomycin. The present method can be readily introduced to short and long-term toxicity assays with a variety of treatment conditions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have