Abstract

Excited states of two 7-aminocoumarin derivatives, coumarin 120 (7-amino-4-methylcoumarin) and coumarin 151 (7-amino-4-trifluoromethylcoumarin), were investigated using generalized multiconfigurational quasidegenerate perturbation theory (GMC-QDPT), multiconfigurational quasidegenerate perturbation theory (MC-QDPT) and time-dependent density functional theory (TDDFT) with the B3LYP and CAM-B3LYP functionals. The absorption and fluorescence spectra of C120 and C151 were calculated. We elucidated the characters of the low-lying states of C120 and C151. The absorption spectra calculated with GMC-QDPT and TDDFT B3LYP agreed well with the experimental data, while for the fluorescence spectra, the TDDFT calculations overestimated the fluorescence spectra compared to GMC-QDPT calculations. Utilizing active spaces with large numbers of electrons and orbitals for reference functions, GMC-QDPT showed a better performance than MC-QDPT with a complete active space self-consistent field (CASSCF) reference of active space with smaller number of electrons and orbitals. In our gas phase calculation, we found that the optimized structures for the first excited states have a planar amino group with a CN single bond, while the amino group is pyramidal in the ground state.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.