Abstract

Multireference [complete active space self-consistent field (CASSCF) and multiconfigurational quasidegenerate perturbation theory (MCQDPT)] and single-reference ab initio (Moller-Plesset second order perturbation theory (MP2) and coupled clusters with singles, doubles and noniterative triples [CCSD(T)]) and density functional theory (PBE and B3LYP) electronic structure calculations of V(C(6)H(6))(+) half-sandwich in the states of different multiplicities are described and compared. Detailed analyses of the geometries and electronic structures of the all found states are given; adiabatic and diabatic dissociation energies are estimated. The lowest electronic state of V(C(6)H(6))(+) half-sandwich was found to be the quintet (5)B(2) state with a slightly deformed upside-down-boat-shaped benzene ring and d(4) configuration of V atom, followed by a triplet (3)A(2) state lying about 4 kcal/mol above. The lowest singlet state (1)A(1)(d(4)) lies much ( approximately 28 kcal/mol) higher. MCQDPT calculated adiabatic dissociation energy (53.6 kcal/mol) for the lowest (5)B(2)(d(4)) state agrees well with the current 56.4 (54.4) kcal/mol experimental estimate, giving a preference to the lower one. Compared to MCQDPT, B3LYP hybrid exchange-correlation functional provides the best results, while CCSD(T) performs usually worse. Gradient-corrected PBE calculations tend to systematically overestimate metal-benzene binding in the row quintet<triplet<singlet.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.