Abstract

Enhancing low-light image visibility is a critical task in computer vision since it helps to improve input for high-level algorithms. High-quality images typically have clear structural information. In previous studies, due to the lack of proper structural guidance, restored images had some problems, such as unclear structural areas and overexposed or underexposed local areas. To address the above problems, in this paper, we introduce a coefficient of variation (COV) with excellent performance in maintaining structural information, and then we propose a low-light image enhancement method that utilizes the COV to extract structural information from images. First, we apply a traditional retinex model to estimate both reflectance and illumination. Second, we use the COV to indicate the degree of dispersion of the input sample, which enables us to obtain a robust structure-distinguishing weight map for low-light images. The weight map is adaptively divided to obtain a structural weight map, which is then used to enhance the gradient image. This process is applied before the reflectance layer of the retinex model. Finally, the result is obtained by using the block coordinate descent method. According to extensive experiments, outstanding results can be achieved by our proposed method in terms of both subjective and objective evaluation metrics in comparison with other state-of-the-art methods. The source code is available at our website <xref ref-type="fn" rid="fn1" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><sup>1</sup></xref> <fn id="fn1" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><label><sup>1</sup></label> <uri>https://github.com/bbxavi/spcv22</uri> </fn> .

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call