Abstract
Low-frequency pulsed electromagnetic fields (LPEMFs) have been reported to be protective for multiple diseases. However, whether the administration of LPEMFs inhibits inflammation and oxidative stress following spinal cord injury requires further investigation. In the current study, a contusion spinal cord injury model was used and LPEMFs administration was applied to investigate the molecular changes, including inflammation, oxidative stress and heat shock protein 70 (HSP70) levels. The results revealed that LPEMFs significantly promoted functional recovery following spinal cord injury, as demonstrated by an increased Basso, Beattie and Bresnahan score. The results demonstrated that LPEMFs decreased the expression of inflammatory factors, including tumor necrosis factor-α, interleukin-1β and nuclear factor-κB. Additionally, LPEMFs exposure reduced the levels of inducible nitric oxide synthase and reactive oxygen species, and upregulated the expression of catalase and superoxide dismutase. Furthermore, treatment with LPEMFs significantly enhanced the expression of HSP70 in spinal cord-injured rats. Overall, the present study revealed that LPEMFs promote functional recovery following spinal cord injury, potentially by modulating inflammation, oxidative stress and HSP70.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.