Abstract

AimSpinal cord injury (SCI) is a common demyelinating disorder of the central nervous system. The differentiation of oligodendrocyte precursor cells (OPCs) into mature oligodendrocytes (OLs), which induce myelination, plays a critical role in the functional recovery following SCI. In this study, the effect of low frequency pulsed electromagnetic field (PEMF) on the differentiation of OPCs and the potential underlying mechanisms were investigated. Main methodsOPCs were randomly divided into the PEMF and non-PEMF (NPEMF) groups. Immunofluorescence and western blot assays were performed to assess the expression levels of OLs stage-specific markers after 3, 7, 14, and 21 days of PEMF or NPEMF exposure. qRT-PCR was used to further assess the expression levels of miR-219-5p, miR-338, miR-138, and miR-9, which are associated with OPCs differentiation, and the expression levels of genes associated with miR-219-5p. Finally, following PEMF or NPEMF exposure, qRT-PCR and western blot assays were performed to explore the relationship between miR-219-5p and Lingo1 and between miR-219-5p and PEMF in promoting OPCs differentiation. Key findingsPEMF promoted the differentiation of OPCs. PEMF upregulated the expression level of miR-219-5p and downregulated the expression level of Lingo1 during the differentiation of OPCs. Under PEMF exposure, miR-219-5p targeted Lingo1 and reversed the inhibitory effect of miR-219-5p inhibitor on OPCs differentiation. In addition, PEMF synergized with miR-219-5p to promote OPCs differentiation. SignificanceOur results, for the first time, indicated that PEMF promoted OPCs differentiation by regulating miR-219-5p activity in vitro.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call