Abstract
Low-frequency noise has been studied in compressively strained Si0.8Ge0.2 core-shell nanowire (NW) p-channel transistors compared with unstrained NWs. The noise has been well interpreted using the carrier number with correlated mobility fluctuation model. The volume trap density, Nt, lies in the range of 2.9×1018–4.3×1019 cm−3 eV−1, which is similar to standard high-k planar devices. The impact of Coulomb and surface roughness scatterings is more significant in unstrained SiGe NWs. This result can be explained by the better carrier confinement at the central region of SiGe NWs due to the additional band offset in the compressively strained NWs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.