Abstract

In this work, we analyze characteristics of Ohmic, Schottky forward and reverse contact through a low-frequency noise (LFN) measurement, combining two types of metals (Pd and Au) as the source and drain (S/D) contacts that enable p-type properties in multi-layer WSe₂ field effect transistors (FETs). The LFN is one of the significant factors liming the performance of nano-scale devices such as TMDCs FETs having large surface-to-volume ratio. In addition, the LFN analysis, which relates to the device reliability, can help identify sensitive areas for current transport and evaluate the analog circuit applicability. Theoretically, the multi-layer WSe₂ has reasonable electron affinity and bandgap that can make p-channel FET using the metal with a relatively high work-function. However, it is experimentally confirmed that Schottky contact characteristics are exhibited in the multi-layer WSe₂ FETs with various metals except Pd due to the metal Fermi level pinning phenomenon. Mobility (μeff, ~87.5 cm²/V·s), one of the electrical performance extracted from fabricated devices with Pd as S/D electrodes shows a great difference from that (~0.572 cm²/V·s) of devices with Au as S/D electrodes. The measured electrical characteristics show that a Schottky contact is formed at an interface between Au and WSe₂ causing the higher LFN of the FETs than that of device with Pd as S/D electrodes. This characteristic is also verified by confirming the reduction of LFN due to the decreased effect of the Schottky property as the drain bias is increased.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call