Abstract

The use of a GeO2 interfacial layer (IL) between a high-k dielectric and a Ge substrate helps to reduce the interface state density in Ge MOS devices. We report that the presence of the GeO2 IL changes the effective work function (eWF) of the gate stack when annealed after high-k dielectric deposition. The eWF is reduced from 4.31eV to 3.98eV for TaN and from 5.00eV to 4.44eV for Ni. Consequently, the threshold voltage (Vth) decreases from 0.69V to 0.21V for Ni after post deposition annealing. Our investigation confirms that the generation of oxygen vacancies in the GeO2 IL near the Ge substrate is the main cause of the eWF modulation. In addition, the reliability of the GeO2 IL is investigated via the conductance method and a constant-current stress test.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.