Abstract
We introduce a measure of how far a lattice L is from being lower semimodular. We call it the lower semimodular type of L. A lattice has lower semimodular type zero if and only if it is lower semimodular. In this paper we discuss properties of the measure and we show that Frankl's conjecture holds for lower quasi-semimodular lattices: if a lattice L is lower quasi-semimodular then there is a join-irreducible element x in L such that the size of the principal filter generated by x is at most (|L|− 1) /2.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have