Abstract
The lower limits of petrophysical properties for an effective reservoir are among the key parameters for assessing hydrocarbon reserves and are therefore directly related to hydrocarbon exploration and development strategies. However, the lower limits for marine sandstone gas reservoirs are still not clear and the impact factors also remain to be discussed. This study analysed the lower petrophysical property limits of an effective sandstone reservoir in the Qiongdongnan Basin using porosity, permeability and gas testing. The results showed that the lower porosity and permeability limits of effective reservoirs developed in the deltas are 8.9% and 1.2 × 10−3 μm2, respectively, and 11.3% and 4.0 × 10−3 μm2 in the submarine canyons and fans, respectively. Sedimentary facies, sediment transport distance, grain size and burial depth of sandstone significantly influence the lower physical property limits. The lower porosity and permeability limits increase with the increase in sediment transport distance as well as the decrease in sandstone grain size and burial depth. Sediment sources and sedimentary facies determine whether sandstone can become an effective reservoir in the Qiongdongnan Basin. Specifically, the sediment source dramatically influences the petrophysical properties of sandstone. The sandstone sourced from the Red River has higher porosity and permeability, followed by the sandstone sourced from the Hainan Uplift, and the sandstone sourced from the palaeo-uplift within the basin has the lowest porosity and permeability. The feldspar dissolution by CO2 and organic acid is the primary formation mechanism of the effective reservoir in the Lingshui Formation, whereas the dissolution of glauconite is more common in the sandstone reservoirs of the Sanya and Meishan formations.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have