Abstract

BackgroundOsteoarthritis (OA) is a clinical problem affecting an estimated 27 million adults in the United States, with the only clear treatment options being pain management. Cycling is an integral component of exercise for individuals with knee osteoarthritis, while the joint reaction forces during cycling remain unknown. MethodsThirteen subjects with medial compartment knee osteoarthritis and eleven healthy subjects performed a cycling protocol with a neutral pedal and four pedal modifications. Six hundred muscle-actuated inverse-dynamic simulations (24 subjects, 5 trials in each of 5 conditions) were performed to estimate joint reaction force differences between conditions. FindingsSubjects with knee osteoarthritis had many significant changes among them was a reduction in knee adduction-abduction moment by 45% (5° lateral wedge), 77% (10° lateral wedge), 54% (5° toe-in) and 58% (10° toe-in). Conversely the healthy subjects had no significant changes in the knee adduction-abduction moment for the lateral wedge conditions and the 5° toe-in but did decrease by 18% for the 10° toe-in condition. When comparing the cohorts across the different pedal conditions, the data showed many significant differences among the groups. InterpretationThis study showed that while cycling in different pedal modifications, the knee osteoarthritis subjects had more beneficial changes in their knee adduction-abduction moment compared to the healthy subjects with the lateral-wedge modification resulting in the greatest impact on the subjects with knee osteoarthritis. Both groups had greater contact forces at the hip and ankle across pedal modifications compared to neutral. For the knee, subjects with osteoarthritis mostly decreased their knee contact forces but the healthy subjects mostly increased these forces with all pedal modifications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.