Abstract

The aim of this study was to determine changes in the lower leg muscles associated with ankle osteoarthritis. Fifteen unilateral ankle osteoarthritis patients and fifteen age-gender-matched normal subjects were assessed with clinical [osteoarthritis latency time, pain, alignment, AOFAS ankle score, ankle range of motion (ROM), calf circumference], radiological (ankle osteoarthritis grading), and muscular-physiological parameters [isometric maximal voluntary ankle torque, surface electromyography of the anterior tibial (AT), medial gastrocnemius (MG), soleus (SO), and peroneus longus (PL) muscle]. The osteoarthritis patients had increased pain (6.8 points) and reduced AOFAS score (33.7 points) compared to the control group. Compared to the contralateral healthy leg, the arthritic leg showed reduced mean dorsi-/plantar flexion ROM (16.0 degrees), reduced mean calf circumference (2.1 cm), smaller mean dorsiflexion (16.4 Nm) and plantar flexion (15.8 Nm) torques, lower mean electromyography frequency for all muscles (AT -22.6 Hz; MG -27.3 Hz; SO -25.9 Hz; PL -28.5 Hz), and lower mean electromyography intensity in the AT [-28.0x10(3) (microv)2], MG [-13.3x10(3) (microv)2], and PL [-12.8x10(3) (microv)2]. SO mean electromyography intensity was not significantly changed [+2.0x10(3) (microv)2]. Unilateral ankle osteoarthritis is associated with atrophic changes of the lower leg muscles. This study supports previous observations on muscle dysfunction in knee osteoarthritis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.