Abstract

BackgroundThe incidence and death rates of endometrial cancer are alarmingly increasing. The diagnosis and treatment of endometrial cancer is crucial to decreasing mortality. Cystic fibrosis transmembrane conductance regulator (CFTR) belongs to the adenosine triphosphate (ATP)-binding cassette transporter family and plays an essential role in anion regulation and tissue homeostasis of various epithelia. This study explored the expression of CFTR in endometrial carcinoma and the role of CFTR in proliferation and migration of endometrial carcinoma cells.Material/MethodsImmunohistochemistry and real-time (RT)-PCR were used to test the expression of CFTR in normal endometrium and endometrial carcinoma. CFTR inhibitor was used to restrain the expression of CFTR on the endometrial carcinoma, the effects on the proliferation and migration of endometrial carcinoma cells were also studied. RT-PCR was performed to test the expression of mir-125b after restraining CFTR. Proliferation and migration capability of endometrial carcinoma cells were detected after transfection of endometrial carcinoma cells with mir-125b mimic.ResultsCompared with cells from normal endometrium, the expression of CFTR was significantly upregulated in endometrial carcinoma cells. After adding CFTR(inh)172, the capability for proliferation and transfer of endometrial carcinoma cells was strengthened, the expression of mir-125b was reduced, and after transfection with mir-125b mimics entering the endometrial carcinoma cells, the ability of the proliferation and transfer of endometrial carcinoma cells was also reduced.ConclusionsThe high expression of CFTR in the endometrial carcinoma cells played a pivotal role in restraining the proliferation and transfer of endometrial carcinoma cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call