Abstract

Let mathsf{H}=(h_{nmjk}) be a non-negative four-dimensional matrix. Denote by L_{p}(mathsf{H}) the supremum of those ℓ satisfying the following inequality: (∑n=0∞∑m=0∞(∑j=0∞∑k=0∞hnmjkxj,k)p)1/p≥ℓ(∑j=0∞∑k=0∞xj,kp)1/p,\\documentclass[12pt]{minimal}\t\t\t\t\\usepackage{amsmath}\t\t\t\t\\usepackage{wasysym}\t\t\t\t\\usepackage{amsfonts}\t\t\t\t\\usepackage{amssymb}\t\t\t\t\\usepackage{amsbsy}\t\t\t\t\\usepackage{mathrsfs}\t\t\t\t\\usepackage{upgreek}\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\t\t\t\t\\begin{document}$$ { \\Biggl( {\\sum_{n = 0}^{\\infty }{\\sum _{m = 0}^{\\infty } {{{ \\Biggl( {\\sum _{j = 0}^{\\infty }{\\sum_{k = 0}^{\\infty }{{h_{nmjk}} {x_{j,k}}} } } \\Biggr)}^{p}}} } } \\Biggr)^{1/p}} \\ge \\ell { \\Biggl( {\\sum_{j = 0}^{\\infty }{\\sum _{k = 0}^{ \\infty }{x_{j,k}^{p}} } } \\Biggr)^{1/p}}, $$\\end{document} where x=(x_{j,k}) in mathcal{L}_{p} with x_{j,k}ge 0. In this paper a Hardy type formula is established for L_{p}(mathsf{H}_{ mu times lambda }^{t}), where 0< ple 1 and mathsf{H}_{mu times lambda } is a four-dimensional Hausdorff matrix. A similar result is also obtained for the case in which mathsf{H}_{mu times lambda } is replaced by mathsf{H}_{mu times lambda }^{t}. As a consequence, we apply the results to some special four-dimensional Hausdorff matrices such as Cesàro, Euler, Hölder and Gamma matrices. Our results contain some generalizations of Copson’s discrete inequality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call