Abstract
New lower bounds of the first nonzero eigenvalue of the weighted p-Laplacian are established on compact smooth metric measure spaces with or without boundaries. Under the assumption of positive lower bound for the m-Bakry–Émery Ricci curvature, the Escobar–Lichnerowicz–Reilly type estimates are proved; under the assumption of nonnegative ∞-Bakry–Émery Ricci curvature and the m-Bakry–Émery Ricci curvature bounded from below by a non-positive constant, the Li–Yau type lower bound estimates are given. The weighted p-Bochner formula and the weighted p-Reilly formula are derived as the key tools for the establishment of the above results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.