Abstract

Understanding how the brain decodes sensory information to give rise to behaviour remains an important problem in systems neuroscience. Across various sensory modalities (e.g. auditory, visual), the time-varying contrast of natural stimuli has been shown to carry behaviourally relevant information. However, it is unclear how such information is actually decoded by the brain to evoke perception and behaviour. Here we investigated how midbrain electrosensory neurons respond to weak contrasts in the electrosensory system of the weakly electric fish Apteronotus leptorhynchus. We found that these neurons displayed lower detection thresholds than their afferent hindbrain electrosensory neurons. Further analysis revealed that the lower detection thresholds of midbrain neurons were not due to increased sensitivity to the stimulus. Rather, these were due to the fact that midbrain neurons displayed lower variability in their firing activities in the absence of stimulation, which is due to lower firing rates. Our results suggest that midbrain neurons play an active role towards enabling the detection of weak stimulus contrasts, which in turn leads to perception and behavioral responses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.