Abstract

BackgroundAdolescent idiopathic scoliosis (AIS) is a disease characterized by changes in the three-dimensional structure of the spine. Studies have shown that the development of AIS might be associated with genetic, biomechanics, endocrine factors and abnormal bone or cartilage development.MethodsBlood samples collected from 301 female patients (161 females with AIS and 140 females without AIS) were used for genotyping. Forty-eight serum samples from 161 females with AIS and 40 serum samples from 140 females without AIS were subjected to enzyme-linked immunosorbent assays (ELISAs). We also evaluated 32 facet joints (18 females with AIS and 14 females without AIS from the 301 female patients) using immunohistochemistry, Western blotting, and isolation of human primary chondrocytes, among other methods. We treated the AIS primary chondrocytes with dihydrotestosterone (DHT) to verify the relationship among androgen, the androgen receptor (AR), and its downstream pathway proteins.ResultsThe serum androgen level in the AIS group was significantly decreased (1.94±0.09 vs. 2.284±0.103) compared with that in the non-AIS (control) group. The single nucleotide polymorphism genotyping results showed that the mutation rates of rs6259 between the AIS and control groups were significantly different (G/G genotype: 48.4% vs. 42.1%, G/A genotype: 40.4% vs. 35.7%, P<0.05). The levels of interleukin (IL)-6 and metalloproteinase (MMP)-13 were increased in the cartilage of AIS patients, and these patients also exhibited decreased AR levels. The cell experiment results showed that androgen reduced the degree of abnormal cartilage development in female AIS patients through the AR/IL-6/signal transducer and activator of transcription 3 (STAT3) signaling pathway.ConclusionsOur study provides a new perspective on the pathogenesis of AIS and indicates that decreased androgen levels in female AIS patients play a potential role in the development of AIS via the AR/IL-6/STAT3 signaling pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.