7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1016/j.plaphy.2022.11.016
Copy DOIJournal: Plant Physiology and Biochemistry | Publication Date: Nov 18, 2022 |
Citations: 13 |
The warming is global problem. In natural environments, heat stress is usually accompanied by drought. Under drought conditions, water content decreases in both soil and air; yet,the effect of lower air humidity remains obscure. We supplied maize and barley plants with an unlimited source of water for the root uptake and studied the effect of relative air humidity under heat stress. Young plants were subjected for 48 h to several degrees of heat stress: moderate (37 °C), genuine (42 °C), and nearly lethal (46 °C). The conditions of lower air humidity decreased the photochemical activities of photosystem I and photosystem II. The small effect was revealed in the control (24 °C). Elevating temperature to 37 °C and 42 °C increased the relative activities of both photosystems; the photosystem II was activated more. Probably, this is why the effect of air humidity disappeared at 37 °C; the small inhibiting effect was observed at 42 °C. At 46 °C, lower air humidity substantially magnified the inhibitory effect of heat. As a result, the maximal and relative activities of both photosystems decreased in maize and barley; the photosystem II was inhibited more. Under the conditions of 46 °C at lower air humidity, the plant growth was greatly reduced. Maize plants increased water uptake by roots and survived; barley plants were unable to increase water uptake and died. Therefore, air humidity is an important component of environmental heat stress influencing activities of photosystem I and photosystem II and thereby plant growth and viability under severe stress conditions.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.