Abstract

Epitaxial graphene can be formed on silicon substrates by annealing a 3C-SiC film formed on a silicon substrate in ultrahigh vacuum (G/3C-SiC/Si). In this work, we explore the graphitization process on the 3C-SiC(111)/Si(111) surface by using low-energy electron diffraction and X-ray photoelectron spectroscopy (XPS) and compare them with that on 6H-SiC(0001). Upon annealing at T≥1150 °C, the 3C-SiC(111)/Si(111) surface follows the sequence of (√3×√3)R30°, (6√3×6√3)R30°, and (1×1)graphene in the surface structures. The C 1s core level according to XPS indicates that a buffer layer, identical with that in G/6H-SiC(0001), exists at the G/3C-SiC(111) buffer. These observations strongly suggest that graphitization on the surface of the 3C-SiC(111) face proceeds in a similar manner to that on the Si-terminated hexagonal bulk SiC crystals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.