Abstract

The photon-counting detector based spectral computed tomography (CT) is promising for lesion detection, tissue characterization, and material decomposition. However, the lower signal-to-noise ratio within multi-energy projection dataset can result in poorly reconstructed image quality. Recently, as prior information, a high-quality spectral mean image was introduced into the prior image constrained compressed sensing (PICCS) framework to suppress noise, leading to spectral PICCS (SPICCS). In the original SPICCS model, the image gradient L1-norm is employed, and it can cause blurred edge structures in the reconstructed images. Encouraged by the advantages in edge preservation and finer structure recovering, the image gradient L0-norm was incorporated into the PICCS model. Furthermore, due to the difference of energy spectrum in different channels, a weighting factor is introduced and adaptively adjusted for different channel-wise images, leading to an L0-norm based adaptive SPICCS (L0-ASPICCS) algorithm for low-dose spectral CT reconstruction. The split-Bregman method is employed to minimize the objective function. Extensive numerical simulations and physical phantom experiments are performed to evaluate the proposed method. By comparing with the state-of-the-art algorithms, such as the simultaneous algebraic reconstruction technique, total variation minimization, and SPICCS, the advantages of our proposed method are demonstrated in terms of both qualitative and quantitative evaluation results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.