Abstract
The combination of carotenoids and doxorubicin (DOX) selectively alters oxidative stress-mediated apoptosis in breast cancer cells. Primarily, cytotoxic efficiency of carotenoids (β-carotene, BC; lutein, LUT; astaxanthin, AST; or fucoxanthin, FUCO) either with or without a minimal cytotoxic dose of DOX was evaluated in MCF-7 (0.12 μM) and MDA-MB-231 cells (0.28 μM). The higher cell growth inhibition of BC and/or LUT with DOX was selected for testing in further cell-based assays. Low-dose DOX significantly enhanced cytotoxicity in carotenoid (<5 μM)-treated cells compared to high-dose DOX (>1 μM) or carotenoid (20 μM) treatment alone. Depleted glutathione, increased lipid peroxides and increased ROS levels in cells confirmed the cytotoxic effect. Furthermore, mitochondrial dysfunction, cell growth arrest at G0/G1 phase and caspase cascades as well as up- and down-regulated expression levels of related proteins (p21, p27, Bax, p53, Bcl-2, and cyclin D1) revealed the synergistic effect of carotenoid and DOX treatment on ROS-mediated apoptosis. These observations demonstrated increased apoptosis in BC + DOX/LUT + DOX-treated cells due to the pronounced pro-oxidant action. Interestingly, normal breast epithelial cells (MCF 10A) exposed to similar treatments resulted in non-significant cytotoxicity. These newly observed mechanistic differences of anticancer drugs on the mitigation of toxicity with carotenoids may provide insight into the targeting of cancer therapy.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have