Abstract

This paper applies a robotics-inspired approach to derive a low-dimensional forward-dynamic hybrid model of human walking in the sagittal plane. The low-dimensional model is derived as a subdynamic of a higher-dimensional anthropomorphic hybrid model. The hybrid model is composed of models for single support (SS) and double support (DS), with the transition from SS to DS modeled by a rigid impact to account for the impact at heel-contact. The transition from DS to SS occurs in a continuous manner. Existing gait data are used to specify, via parametrization, the low-dimensional model that is developed. The primary result is a one-degree-of-freedom model that is an exact subdynamic of the higher-dimensional anthropomorphic model and describes the dynamics of walking. The stability properties of the model are evaluated using the method of Poincare. The low-dimensional model is validated using the measured human gait data. The validation demonstrates the observed stability of the measured gait.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call