Abstract

We present the implementation and utilisation of simple yet efficient low-dimensional models to simulate the response of atomic and molecular systems to light pulses, from the perturbative to the strong field regimes, with direct applications to attosecond sciences. The motivation is that solving the time-dependent Schrödinger equation for such simple models often proves more useful to get a clear physical picture than solving it for a full-fledged multi-dimensional model. We have focused the chapter on one- and two-dimensional approaches with illustrations on high-order harmonic generation and the photoionisation processes that are essential in an attophysics context. Within this framework, the topics we shall consider are the modelling of various aspects of high order harmonic generation in atoms and molecules (emission times, quantum path interferences, influences of the internuclear structure and dynamics) and the investigation of near threshold photoemission of a diatomic molecule with vibronic resolution from a time-dependent perspective. The advantages and limitations of low-dimensional models are discussed through the chapter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.