Abstract

We investigate how short and long electron trajectory contributions to high harmonic emission and their interferences give access to information about intra-molecular dynamics. In the case of unaligned molecules, we show experimental evidence that the long trajectory contribution is more dependent upon the molecular species than the short one, providing a high sensitivity to cation nuclear dynamics from 100’s of as to a few fs after ionisation. Using theoretical approaches based on the strong field approximation and numerical integration of the time dependent Schrödinger equation, we examine how quantum path interferences encode electronic motion when the molecules are aligned. We show that the interferences are dependent upon which ionisation channels are involved and any superposition between them. In particular, quantum path interferences can encode signatures of electron dynamics if the laser field drives a coupling between the channels. Hence, molecular quantum path interferences are a promising method for attosecond spectroscopy, allowing the resolution of ultra-fast charge migration in molecules after ionisation in a self-referenced manner.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.