Abstract

Low-dimensional II-VI oxide-based semiconductor nanostructure photodetectors for light sensing are described. Depending on the absorption edge and energy bandgap of the nanostructured materials, the detection wavelength range can be controlled. The physical properties of the fabricated nanostructures are investigated. The p-n junction property of n-ZnO and p-CuO nanostructures is obtained. This growth of the ZnO nanorod arrays on CuO nanostructures may be useful for photodetection applications. The NiO/ZnO nanostructures are also synthesized. Metal-semiconductor-metal (MSM) type photodetectors are fabricated by integrating the oxide-based (i.e., ZnO and CuO) semiconductor nanostructures. Using the solution-based ZnO seed layer, the UV MSM type photodetectors with the vertically-aligned ZnO nanorod arrays are also fabricated. Their photoresponse characteristics are evaluated in a specific spectral range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.