Abstract
Low-dimensional II-VI oxide-based semiconductor nanostructure photodetectors for light sensing are described. Depending on the absorption edge and energy bandgap of the nanostructured materials, the detection wavelength range can be controlled. The physical properties of the fabricated nanostructures are investigated. The p-n junction property of n-ZnO and p-CuO nanostructures is obtained. This growth of the ZnO nanorod arrays on CuO nanostructures may be useful for photodetection applications. The NiO/ZnO nanostructures are also synthesized. Metal-semiconductor-metal (MSM) type photodetectors are fabricated by integrating the oxide-based (i.e., ZnO and CuO) semiconductor nanostructures. Using the solution-based ZnO seed layer, the UV MSM type photodetectors with the vertically-aligned ZnO nanorod arrays are also fabricated. Their photoresponse characteristics are evaluated in a specific spectral range.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have