Abstract

Protective metallic coatings are receiving increasing attention to modify the anti-corrosion and oxidation resistance of zirconium-based fuel cladding tubes under harsh high-temperature steam/air oxidation conditions. In this work, ultrathick (∼20 μm) and compact Cr coatings with (001) preferential orientation were deposited on Zircaloy-4 (Zry-4) alloy by high power impulse magnetron sputtering (HiPIMS) technique. The growth characteristics of the Cr coatings were investigated as a function of the discharge plasma species, including Cr+, Cr*, Ar+, and Ar*, which were controlled by the different discharge modes during HiPIMS process. The results showed that, when the discharge feature was changed from the ‘low voltage direct current magnetron sputtering (DCMS)-like’ mode into a ‘low density HiPIMS’ mode, a rapid increase of Cr+ content in the substrate vicinity was obtained by time-integral optical emission spectra (OES), indicating a remarkably enhanced incident energy flux to the deposited Cr coating. The generalized temperature increment of the Cr coating growing surface calculated from the OES, was ∼100 K and was mainly affected by the incidence of Cr* atoms. A simplified collision model based on the non-penetrating ions/atoms assumption was also proposed to calculate the transferred energy from the incident energetic species and thus understand the predominant effect of HiPIMS Cr plasma on the achieved nanocrystalline Cr coating with ultra-thick and dense structure, which is still quite challenging for the DCMS deposition process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.