Abstract
In this study, the ability of low-cost composite adsorbents to treat organic compounds in terms of chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) was investigated. The composite adsorbents were composed of washed sea sand (WSS), dewatered alum sludge (DAS), zero-valent iron (ZVI), and granular activated carbon (GAC). The removal efficiency of COD in landfill leachate by a composite adsorbent (composed of WSS (40%), DAS (40%), ZVI (10%), and GAC (10%) in weight) was 79.93 ± 1.95%. The corresponding adsorption capacity was 8.5 mg/g. During batch sorption experiments, the maximum COD removal efficiencies given by DAS, WSS, ZVI, and GAC were 16, 51.3, 42, and 100.0%, respectively. The maximum removal efficiencies of the above composite adsorbent for TN and TP were 84.9 and 97.4%, respectively, and the adsorption capacities were 1.85 and 0.55 mg/g, respectively. The Elovich isotherm model gave the best fit for COD, TN, and TP adsorption. This composite adsorbent can treat more than one contaminant simultaneously. The application of DAS and ZVI to make an efficient adsorbent for wastewater treatment would be a good re-use application for them, which would otherwise be landfilled directly after their generation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.