Abstract
Silicoaluminophosphate-34 (SAPO-34) molecular sieves have important applications in the petrochemical industry as a result of their shape selectivity and suitable acidity. In this work, nanoaggregate SAPO-34 with a large external surface area was obtained by dissolving pseudoboehmite and tetraethylorthosilicate in an aqueous solution of tetraethylammonium hydroxide and subsequently adding phosphoric acid. After hydrolysis in an alkaline solution, the aluminum and silicon precursors exist as Al(OH)4− and SiO2(OH)−, respectively; this is beneficial for rapid nucleation and the formation of nanoaggregates in the following crystallization process. Additionally, to study the effect of the external surface area and pore size on the catalytic performance of different SAPO-34 structures, the alcoholysis of furfuryl alcohol to ethyl levulinate (EL) was chosen as a model reaction. In a comparison with the traditional cube-like SAPO-34, nanoaggregate SAPO-34 generated a higher yield of 74.1% of EL, whereas that with cube-like SAPO-34 was only 19.9%. Moreover, the stability was remarkably enhanced for nanoaggregate SAPO-34. The greater external surface area and larger number of external surface acid sites are helpful in improving the catalytic performance and avoiding coke deposition.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have