Abstract

The high epitaxial cost of high-efficiency III-V photovoltaic devices has limited these cells to niche markets. In this work, we demonstrate hydride vapor-phase epitaxy (HVPE) growth of III-V materials as a low-cost, high-throughput alternative to conventional metal-organic vapor-phase epitaxy (MOVPE). A brand new, custom-built HVPE reactor was used to obtain high-quality GaAs films at growth rates as high as 1.5 μm/min (90 μm/h). Near-ideal Hall mobilities for both n- and p-type carriers are demonstrated. Preliminary GaAs p-n junctions with unpassivated surfaces show significant rectifying behavior and excellent carrier collection, open-circuit voltage as high as 0.95 V, and fill factors of 86% under AM1.5G illumination. These results show the viability of HVPE for the growth of high-quality III-V devices at significantly lower costs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.