Abstract

The high cost of high-efficiency III-V photovoltaic devices has limited them to niche markets. Hydride vapor phase epitaxy (HVPE) growth of III-V materials has recently reemerged as a low-cost, high-throughput alternative to conventional metal organic vapor phase epitaxy (MOVPE) growth of high-efficiency solar cells. Previously we demonstrated unpassivated HVPE GaAs p-n junctions with excellent carrier collection and high open-circuit voltage (Voc). In this work, we demonstrate the growth of GaInP by HVPE for use as a high-quality interface passivation layer to GaAs solar cells. Solar cells grown with GaInP window layers show significantly improved carrier collection compared to unpassivated cells, improving the performance of these low-cost devices. These results show the viability of HVPE for the growth of high quality III-V devices at significantly lower costs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call