Abstract
In cryptography, elliptic curve cryptography (ECC) is considered an efficient and secure method to implement digital signature algorithms (DSAs). ECC plays an essential role in many security applications, such as transport layer security (TLS), internet protocol security (IPsec), and wireless sensor networks (WSNs). The proposed designs of ECC hardware implementation only focus on a single ECC variant and use many resources. These proposals cannot be used for resource-constrained applications or for the devices that need to provide multiple levels of security. This work provides a multi-functional elliptic curve digital signature algorithm (ECDSA) and Edwards-curve digital signature algorithm (EdDSA) hardware implementation. The core can run multiple ECDSA/EdDSA algorithms in a single design. The design consumes fewer resources than the other single-functional design, and is not based on digital signal processors (DSP). The experiments show that the proposed core could run up to 112.2 megahertz with Virtex-7 devices while consuming only 10,259 slices in total.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.