Abstract

The compression of the industrialization process has forced China to confront the double pressure of greenhouse gas emissions and air pollution. This paper constructs an energy system optimization model for China’s power industry; establishes four energy consumption scenarios with different constraints; and forecasts and analyses the energy consumption structure, power consumption demand and production composition of China’s power industry from 2020 to 2050. Furthermore, based on synergistic effects, the emission characteristics, emission reduction potential and costs of CO2 and air pollutants are quantitatively analysed, and the obtained synergistic emission reduction effect and influencing factors are decomposed based on technical effect and structural effect. Finally, a low-carbon emission reduction path that can realize the synergistic control of CO2 and traditional air pollutants in China’s power industry is obtained. The results show that in the future, China’s power industry will continue to grow at a greater rate than primary energy consumption and the focus of power demand will gradually shift from industry to transportation and construction. The power industry can introduce and maximize the application of optimal control technologies while optimizing the energy consumption structure in order to realize synergistic emission reduction for CO2 and traditional air pollutants in China’s power industry. While saving energy, the corresponding cost of emission reduction will remain relatively low. After CO2 emissions peak in the power industry, the main way to reduce CO2 emissions will be to optimize the structure and upgrade the technology for CO2 self-governance. For the reduction of air pollutants, the promotion effect is limited only by the implementation and promotion of structural emission reduction measures focused on non-fossil energy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call