Abstract

The cornerstone to treat metabolic syndrome and insulin resistance is dietary intervention. Both low-carbohydrate diet (LCD) and low-fat diet (LFD) have been reported to induce weight loss and improve these conditions. One of the factors associated with a subject's adherence to the diet is satiety. The aim of this study was to evaluate the effects of LCD and LFD on body weight, appetite hormones, and insulin resistance. Twenty guinea pigs were randomly assigned to LCD or LFD (60%:10%:30% or 20%:55%:25% of energy from fat/carbohydrate/protein, respectively) for 12 weeks. Weight and food intake were recorded every week. After this period, animals were killed and plasma was obtained to measure plasma glucose and insulin, appetite hormones, and ketone bodies. Guinea pigs fed LCD gained more weight than those fed LFD. The daily amount of food intake in grams was not different between groups, suggesting that food density and gastric distension played a role in satiety. There was no difference in leptin levels, which excludes the hypothesis of leptin resistance in the LCD group. However, plasma glucagon-like peptide–1 was 47.1% lower in animals fed LCD ( P < .05). Plasma glucose, plasma insulin, and insulin sensitivity were not different between groups. However, the heavier animals that were fed LFD had impairment in insulin sensitivity, which was not observed in those fed LCD. These findings suggest that satiety was dependent on the amount of food ingested. The weight gain in animals fed LCD may be related to their greater caloric intake, lower levels of glucagon-like peptide–1, and higher protein consumption. The adoption of LCD promotes a unique metabolic state that prevents insulin resistance, even in guinea pigs that gained more weight. The association between weight gain and insulin resistance seems to be dependent on high carbohydrate intake.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.