Abstract

Dwarf satellite galaxies of the Milky Way appear to be gravitationally bound, but their stars' orbital motion seems too fast to allow this given their visible mass. This is akin to the larger-scale galaxy rotation problem. In this paper, a modification of inertia called quantised inertia or MiHsC (Modified inertia due to a Hubble-scale Casimir effect) which correctly predicts larger galaxy rotations without dark matter is tested on eleven dwarf satellite galaxies of the Milky Way, for which mass and velocity data are available. Quantised inertia slightly outperforms MoND (Modified Newtonian Dynamics) in predicting the velocity dispersion of these systems, and has the fundamental advantage over MoND that it does not need an adjustable parameter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call