Abstract

The property of inertia has never been fully explained. A model for inertia (MiHsC or quantised inertia) has been suggested that assumes that 1) inertia is due to Unruh radiation and 2) this radiation is subject to a Hubble-scale Casimir effect. This model has no adjustable parameters and predicts the cosmic acceleration, and galaxy rotation without dark matter, suggesting that Unruh radiation indeed causes inertia, but the exact mechanism by which it does this has not been specified. The mechanism suggested here is that when an object accelerates, for example to the right, a dynamical (Rindler) event horizon forms to its left, reducing the Unruh radiation on that side by a Rindler-scale Casimir effect whereas the radiation on the other side is only slightly reduced by a Hubble-scale Casimir effect. This produces an imbalance in the radiation pressure on the object, and a net force that always opposes acceleration, like inertia. A formula for inertia is derived, and an experimental test is suggested.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call