Abstract

The effect of low-voltage electrostatic field (LVEF) assisted −9 °C (LVEF-9) and −12 °C (LVEF-12) frozen, non-LVEF-assisted −9 °C (NLVEF-9) and −12 °C (NLVEF-12) frozen, and conventional frozen (CF-18, −18 °C) storage on the muscle microstructure and the oxidative denaturation of the lamb protein during the subsequent frozen storage process after finishing initial freezing was investigated. Compared with NLVEF-9, LVEF-9, and NLVEF-12, LVEF-12 maintained the better integrity of muscle microstructure, demonstrated by smaller holes, more complete Z-line and M-line, and no significant difference with CF-18 (P > 0.05). Furthermore, LVEF-12 effectively inhibited protein oxidative denaturation as shown by the lower carbonyl content, surface hydrophobicity, and higher total/active sulfhydryl groups and Ca2+-ATPase activity. Moreover, LVEF-12 effectively maintained the integrity of the secondary and tertiary structure of proteins, reduced cross-linking aggregation of proteins, and sustained better functional properties, as shown by higher α-helix content, fluorescence intensity, protein solubility, and lower R-value, disulfide bonds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call