Abstract

In this paper, the dynamic behavior of the nanoparticle low-velocity impact on viscoelastic laminated composite nanoplate has been investigated. To determine the impact force between nanoparticle and laminated composite nanoplate, the van der Waals interaction force is considered based on the description of Lennard-Jones. The material properties of each layer of laminated composite nanoplate are supposed to be viscoelastic based on the Kelvin–Voigt model. The governing equations of the system are derived based on the first-order shear deformation plate theory and the nonlocal strain gradient theory by employing Hamilton’s principle. Galerkin’s method is employed to solve differential equations of nanoplate with different boundary conditions. Afterward, the system of time-dependent equations is solved by applying the Newmark’s method. The parametric study is presented to examine the effect of particle initial velocity, particle radius, viscoelastic modulus, fiber orientation, nonlocal parameter, length scale parameter, and different boundary conditions on the impact response of nanoplate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.