Abstract

The present research aims to analyze the response of viscoelastic laminated composite microplate under microparticle low-velocity impact. Hertz contact law is used to model the impact phenomenon between the microparticle and the microplate. According to Kelvin-Voigt theory, the realistic behavior of the structure is considered by considering the viscoelastic properties. The governing equations of the system are derived based on the first-order shear deformation plate theory (FSDT) and the nonlocal strain gradient theory (NSGT) by employing Hamilton's principle. Galerkin's method is employed to solve differential equations of microplate with different boundary conditions. Afterward, the system of time-dependent equations by applying the Newmark' s method is solved. The parametric study is presented to examine the effect of particle radius, particle initial velocity, nonlocal parameter, length scale parameter, viscoelastic modulus, fiber orientation, and different boundary conditions on the impact response of microplate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.