Abstract

In this work, we propose combining a low work function anode metal and junction barrier Schottky structure to simultaneously achieve low turn-on voltage (Von) and high breakdown voltage (BV), which alleviates the dilemma that high BV requires high Schottky barrier height (SBH) and high Von. Molybdenum (Mo) is used to serve as the anode metal to reduce the SBH and facilitate fast turn-on to achieve a low Von. To resolve the low SBH related low BV issue, a p-NiO/n-Ga2O3-based heterojunction structure is used to enhance β-Ga2O3 sidewall depletion during the reverse state to improve the BV. With such a design, a low Von = 0.64 V(@1A/cm2) and a high BV = 2.34 kV as well as a specific on-resistance (Ron,sp) of 5.3 mΩ cm2 are demonstrated on a 10 μm-drift layer with a doping concentration of 1.5 × 1016 cm−3. β-Ga2O3 JBS diodes with low Von = 0.64 V and a power figure of merit of 1.03 GW/cm2 show great potential for future high-voltage and high-efficiency power electronics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call