Abstract

The ever-growing energy demand of modern society calls for the development of high-loading and high-energy-density batteries, and substantial research efforts are required to optimize electrode microstructures for improved energy storage. Low-tortuosity architecture proves effective in promoting charge transport kinetics in thick electrodes; however, heterogeneous electrochemical mass transport along the depth direction is inevitable, especially at high C-rates. In this work, we create an active material gradient in low-tortuosity electrodes along ion-transport direction to compensate for uneven reaction kinetics and the nonuniform lithiation/delithiation process in thick electrodes. The gradual decrease of active material concentration from the separator to the current collector reduces the integrated ion diffusion distance and accelerates the electrochemical reaction kinetics, leading to improved rate capabilities. The structure advantages combining low-tortuosity pores and active material gradient offer high mass loading (60 mg cm-2) and enhanced performance. Comprehensive understanding of the effect of active material gradient architecture on electrode kinetics has been elucidated by electrochemical characterization and simulations, which can be useful for development of batteries with high-energy/power densities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.