Abstract

From guinea-pig hypothalamic slices, intracellular studies demonstrate the existence of neurons responding to depolarizing current pulses by bursts of fast spikes riding on slow depolarizing potentials, when activated at the resting potential or from hyperpolarized levels (44 cells). Slow depolarizing potentials have a mean amplitude of 17.6 mV and a mean duration of 65.2 msec. They are also produced at the termination of hyperpolarizing current pulses. The ionic basis for these slow potentials have been investigated. Fast spikes constituting the burst discharge are blocked by TTX but the slow component is unaffected, being blocked by Co ++ and enhanced by Ba ++. Taken together, these results show that the slow depolarizing potentials are generated by a low-threshold Ca ++ conductance which is de-inactivated by membrane hyperpolarization. When the neurons are spontaneously active, they exhibit bursts arising from slow depolarizing potentials reminiscent of those evoked by direct stimulation. They also show longer episodes of repetitive firing. Twelve neurons were intracellularly stained and were found in the periphery of the paraventricular nucleus (PVN), in close proximity to the groups of neurophysin-positive neuroendocrine neurons present in the lateral part of this nucleus. Injected neurons have the morphology of reticular cells, judging by their few multipolar, rectilinear and sparsely branched dendrites. Some of their processes are directed towards PVN. Because of their intrinsic electrophysiological properties and their possible relationships with PVN, the population of cells described in the present study may play a role in functions relating to the PVN.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.