Abstract

Homeostatic regulation of energy balance in rodents changes dramatically during the first 3 postnatal weeks. Neuropeptide Y (NPY) and melanocortin neurons in the arcuate nucleus, a primary energy homeostatic center in adults, do not fully innervate the paraventricular nucleus (PVN) until the third postnatal week. We have identified two classes of PVN neurons responsive to these neuropeptides, tonically firing neurosecretory (NS) and burst-firing preautonomic (PA) cells. In neonates, NPY could inhibit GABAergic inputs to nearly all NS and PA neurons, while melanocortin regulation was minimal. However, there was a dramatic, age-dependent decrease in NPY responses specifically in the PA neurons, and a 3-fold increase in melanocortin responses in NS cells. These age-dependent changes were accompanied by changes in spontaneous GABAergic currents onto these neurons. This primarily NPYergic regulation in the neonates likely promotes the positive energy balance necessary for growth, while the developmental switch correlates with maturation of homeostatic regulation of energy balance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.