Abstract

The low frequency infrared and Raman spectra of normal and per-deuterated ((CH3)4N)2[MCl6] (M=Pt, Te, or Sn) have been measured at temperatures down to ∼100 K and evidence for phase transitions was found. The spectra have been carefully assigned and it was shown that bands due to forbidden methyl torsions and other noncubic features play a role, especially in spectra at low temperatures. Possible site symmetries of the [PtCl6]2− ion, which cannot have strictly Oh symmetry in either phase, have been deduced. The spectra of a mixed Pt : Te compound showed that the hexachlorometallate anions vibrate approximately independent of each other. The results have been compared with von der Ohe’s recent extensive low temperature Raman study on protonated compounds with M=U, Sn, and Zr, and his conclusions are discussed. It is shown that crystals of this kind can be characterized by methyl–chlorine interaction and it is suggested that the phase transitions are caused by an ordering of rotationally disordered methyl groups via the formation of weak C–H⋅⋅⋅Cl hydrogen bonds at low temperatures. The transition temperatures and hence the interactions are shown to depend on both the kind of hydrogen isotope and metal present in the crystals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.