Abstract

High-efficiency radial p-n junction SiNW solar cells have been realized using UV ozone treatment of n-Si NW arrays embedded in a p-Si matrix structure. This structure provides the advantage of homogeneous and continuous front electrode patterning, which results in a lower series resistance than for core-shell morphology. Surface and bulk recombination is chiefly responsible for degrading cell performance with increased SiNW length in spite of enhanced junction area and improved light-trapping capability. In this study we estimated the critical NW length necessary to obtain optimal cell performance with minimum carrier loss in a simple radial p-n junction solar cell. Further low-temperature UV ozone treatments offer the potential to enhance solar cell properties by passivating, by oxidation, the large number of surface defect states.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call