Abstract
Amorphous nickel carbonate particles are catalysts for the oxygen evolution reaction (OER), which plays a critical role in the electrochemical splitting of water. The amorphous nickel carbonate particles can be prepared at a temperature as low as 60 °C by an evaporation-induced precipitation (EIP) method. The products feature hierarchical pore structures. The mass-normalized activity of the catalysts, measured at an overpotential of 0.35 V, was 55.1 A g(-1) , with a Tafel slope of only 60 mV dec(-1) . This catalytic activity is superior to the performance of crystalline NiOx particles and β-Ni(OH)2 particles, and compares favorably to state-of-the-art RuO2 catalysts. The activity of the amorphous nickel carbonate is remarkably stable during a 10 000 s chronoamperometry test. Further optimization of synthesis parameters reveals that the amorphous structure can be tuned by adjusting the H2 O/Ni ratio in the precursor mixture. These results suggest the potential application of easily prepared hierarchical basic nickel carbonate particles as cheap and robust OER catalysts with high activity.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have